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Abstract — This work proposes a new reconstruction
procedure of two-dimensional microwave structures based
on the inversion of the two-dimensional TLM (Transmission
Line Matrix) method. The technique is based on the solution
of the inverse scattering problem using a TLM based
algorithm. The procedure consists of determining the
geometry of the obstacle that generates the desired scattered
field. In the case of TLM thisfield is the time-domain input
reflection coefficient at all input terminals and the geometry
is the impedance at all nodes of the TLM mesh. The
procedure can be used to reconstruct objects with arbitrary
characteristicsin small TLM meshes.

|. INTRODUCTION

The solution of inverse problemsis a promising area in
Electromagnetics. This kind of problem is quite different
from the problems handled by popular field solvers. In
field analysis problems, one uses computational tools to
determine the unknown field created by a particular
known configuration of sources and boundaries. In the
inverse problem, it is necessary to determine what is the
unknown configuration of sources and boundaries that
result in a particular known field.

There are several algorithms used to estimate the
geometry of a structure that causes a known field
configuration [1]. Most of the proposed solutions use
some degree of approximation. This work presents a new
solution procedure based on the inversion of the two-
dimensional TLM method. The one-dimensional
inversion of TLM was presented in an earlier work [2].
The technique presented in this paper expands the
concepts and ideas developed for 1D cases to 2D
problems.

The two-dimensional inverse TLM procedure can be
applied to severa kinds of problems. It can be used with
problems with dispersion, higher order modes and two-
dimensional space variations of the structure. This kind of
problem can not be solved with 1D TLM.

Il. THEORY

In the one-dimensional case, the inverse TLM was used
to determine an impedance profile of a discrete non-
uniform transmission line. This profile was calculated by
decomposing the time-domain input reflection coefficient.
The input reflection coefficient is decomposed in terms of
the reflection waves on al sections of the discrete
transmission line. This was accomplished by using an
iterative calculation of the inverse TLM algorithm at each
section of the line. The result was exact within the
sampling limits of the time-domain input reflection
coefficient.

The use of TLM to solve two-dimensional inverse
problems has some similarities with the inverse one-
dimensional case. In both cases, the impulse sequences
that compose the input reflection coefficient are used to
determine the geometry of the problem. However the 2D
inverse problem consists of the determination of an
unknown geometry (obstacle) immersed in a particular
region of space. The 1D algorithm works only with
impedance profiles of transmission lines.

If an impulsive plane wave isincident in that particular
region of space, the scattered field is the parameter used
to calculate the geometry of the obstacle. Since 2D TLM
can be used to determine the scattered field from a 2D
obstacle for TMmO and TEmO waves, a TLM mesh can
model the two-dimensional space. In this model, the
geometry is represented by arbitrary variations of the
impedance of the transmission lines.

Since TLM models the region by a NxM mesh of
transmission lines [3-4], the TEM incident wave will be
represented by incident impulses on each input line that
composes the mesh. Similarly, other features of the
obstacle will be represented by modifications in regions of
the mesh. For instance, metallic regions can be modeled
either by null impedance regions (short circuits) or by
metallic walls between nodes. However, the
reconstruction procedure (inverse 2D TLM) demands
some modifications to the representation of impedances
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on the TLM mesh. In most implementations of 2D TLM
[3-4], different dielectric constants are modeled by open
circuited stubs connected to the TLM nodes (junction
between two transmission lines). The value of the stub is
calculated from the relative dielectric constant. If the
relative permeability of the medium is one, this is
equivalent to local impedances in the mesh.

b

A
Incidente

(a)

(b)

Fig. 1. Obstacle in free space: (a) continuous representation
and (b) discrete model in 2D TLM.

The reconstruction requires that the representation of
impedances on the mesh be realized by transmission and
reflection coefficients between nodes. These coefficients
simulate the behavior of junction of lines of different
impedances. This can be seenin Fig. 2.

In the TLM model of the problem the scattered field
can be seen and the total reflection coefficient at the input
lines of the TLM mesh. Each line (numbered from
x=1...M) will have a time domain response. This
response is composed by the sum of the delayed reflected

impulses from every element of the mesh. Therefore, the
total input reflection coefficient is:

G(xh=aa(d(t- 200

Where ak(x) is a combination of the impulse response
of al transmission lines up to column y=(k+2)/2 of the
TLM mesh.

The analytical expression of ak(x) contains al the
infformation necessary to determine the obstacle.
However, its calculation is very complex and seldom can
be performed. We propose the inverson of two-
dimensional TLM to solve this problem.
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Fig.2. TLM representations. (a) Stub loaded 2D TLM and

(b) modified TLM mesh.

Using Fig. 2 and Fig.3 as references, it can be observed
that the effect of the longitudinal propagation (through
columns) appears at the input lines only at odd timesteps.
Thisisafeatureis similar to the one-dimensional case.

Asin the one-dimensional case, the 2D TLM algorithm
is used to describe the reflection and transmission of
impulses at each node of the mesh. The procedure is
performed in time-domain for an appropriate number of
timesteps. At each node and timestep, the reflected waves
are calculated using:
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The transmitted waves are calculated with:
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This implementation differs from traditiona
approaches as mentioned in a previous topic.
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Fig.3. 2D TLM mesh representing arbitrary electromagnetic

structure that will be reconstructed (a), mesh section
reconstructed for k=0 (b), k=2 (c), k=4 (d) and k=6 (€).

The inverse TLM procedure described in [2] can be
applied in this case. Since the differences in impedance
values are represented in the connections between nodes,
the impulse propagation takes the form described in Fig.
4. Therefore, only the impulses travelling in the
longitudinal directions will be responsible for the
reflection coefficient information. Using this coefficient
the impedance of the section can be determined as shown
in[2].
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Impulse propagation on 2D TLM mesh.

Fig. 4.

If two TLM simulations are performed, the reflection
coefficient can be uniquely determined. In the first
simulation the longitudinal travelling wave finds an open
circuit. In the second simulation the wave finds a
matched load. With these simulations the reflection
coefficient at the point x1,y1 of the mesh is:

Gx — a2k+1(X1’0) - agl?:ihed (Xl’o) @)
A (%,0) - ageg ™ (%,0)

With this coefficient the impedance at point x1,y1 can
be calculated. This procedure will be repeated at each
timestep up to the point when the time-domain input
reflection coefficient can be truncated. This will yield the
impedance matrix of the TLM mesh. This procedure can
be performed in a parallel implementation.

I11. NUMERICAL RESULTS

The first point to study in this procedure is the
numerical stability. After several reconstructions, we
verified that the technique is marginally stable. The
reason is small numerical errors, which are present in the
calculation of (7) for small reflections. These errors tend
to grow since the procedure is done recursively.
Nevertheless there are some ways to minimize the
problem. If the reconstructed structure known to be
metallic, a simple verification of the calculated
impedance can prevent the stability problem. If it has
mixed boundaries (dielectric and metal) a reduction of the
significant algarisms of the response can delay the
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praoblem. In the latter case, the effective computational
domain for areconstruction is 20 x 20 TLM nodes.

The second point is the study of processing time. In the
case of a TLM mesh with N2 nodes, 2N simulations will
be performed. The processing time of the algorithm is of
the order N4 as shown in Fig. 5. Therefore, if the number
of elements is doubled the processing time will be roughly
16 times greater. The inverse 2D TLM was validated by
numerical reconstructions of arbitrary structures in TLM
meshes. The structure had the TLM response calculated
and used in the reconstruction. The time-domain response
at the input terminalsis shown in Fig. 6. Fig. 7 shows the
reconstructed structure. Since TLM was used in the
calculation of the response, the reconstruction error is
zero.

Processing Time of Inverse 2D TLM
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Fig.5. Order of processing time of the inverse 2D TLM
algorithm. ( __ )Numerical resultsand (o) Theory.
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Fig. 6. Time-domain response at the input termina of the

mesh.

This technique allows the synthesis of microwave
structures with arbitrary time-domain responses. It can
aso be used to design filters and other microwave

structures. However, if only the dominant propagation
mode is considered in the reconstruction, the resulting
structure will be composed by a longitudina sequence of
dielectrics. The reason is that any filter designed using
resonators is based on discontinuities (which cause higher
order modes).
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Fig. 7. Reconstructed object by inverse 2D TLM.

V. CONCLUSION

This work presented a new reconstruction technique for
microwave structures using inverse scattering two-
dimensional TLM. The procedure consists of using the
inverse TLM method as a tool for determining the
impedance in a 2D TLM mesh that represents an
unknown microwave structure. This is accomplished
using its the time domain input reflection coefficient at all
input terminals of the TLM mesh. The procedure was
validated with numerical simulations. The results show
good agreement (within 0.1%). Research is being pursed
in athree dimensional version of the procedure.
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